
Computer Science

‘We Seek the Best’



AO Emerging Developing Securing Mastering

AO1Recall & Understanding
- Identifies basic computing 
terms (e.g. algorithm, input, 
output)- Recalls simple facts

- Describes key concepts with 
some accuracy- Understands 
basic functions of 
hardware/software

- Explains concepts in own 
words (e.g. binary, 
abstraction)- Uses correct 
vocabulary consistently

- Shows detailed understanding 
of advanced concepts (e.g. 
compression, logic gates)- 
Connects multiple topics

AO2Application & Skills

- Follows step-by-step 
instructions (e.g. copying 
code)- Uses software with 
guidance

- Modifies given code and can 
complete guided tasks (e.g. 
Scratch, Python basics)

- Designs solutions 
independently- Writes 
programs with selection and 
iteration

- Creates well-structured 
programs- Debugs and 
optimises code efficiently

AO3Evaluation & Analysis
- Identifies when something 
doesn’t work- Seeks help when 
prompted

- Can find and fix basic errors- 
Begins to explain why a 
solution works

- Tests code systematically- 
Reflects on how and why 
solutions are effective

- Compares different 
approaches- Suggests 
meaningful improvements



Computer Science

‘We Seek the Best’



Topic Assessment Objective Key Skills / Student Outcomes Example Tasks

1.1 Systems Architecture AO1
Describe the purpose of the CPU; explain 
functions of ALU, CU, and registers

Label a CPU diagram; define registers like 
MAR/MDR

AO2
Apply knowledge of the fetch-decode-execute 
cycle

Match steps to stages; sequence stages of FDE

AO3
Analyse how processor performance is affected 
by cache, cores, clock speed

Evaluate upgrade options for a device

1.2 Memory and Storage AO1
Identify types of memory (RAM, ROM, flash); 
define primary and secondary storage

Definitions quiz or short answers

AO2 Apply knowledge to compare storage devices
Choose storage for a given scenario (e.g. SSD vs 
HDD)

AO3 Justify storage decisions based on scenario
Explain the best storage solution for a music 
producer

1.3 Computer Networks AO1
Explain types of networks (LAN, WAN); describe 
network topologies

Short written answers; identify LAN/WAN in 
context

AO2 Apply understanding of protocols and hardware Identify needed hardware for a small office setup

AO3
Analyse network designs and evaluate 
improvements

Compare bus and star topology for efficiency

1.4 Network Security AO1 Recall security threats (phishing, malware, etc.) Define and identify different threats

AO2 Apply security measures to scenarios Recommend protection strategies for a business

AO3 Evaluate effectiveness of security methods Compare use of antivirus vs. penetration testing

1.5 Systems Software AO1
Describe purpose and functions of OS and utility 
software

Define multitasking, drivers, file management

AO2 Match utility tools to their functions Choose utilities for specific tasks (e.g. backup)

AO3 Evaluate use of utilities in different contexts Analyse when defragmentation is useful or not

1.6 Ethical, Legal, Cultural, Environmental AO1
Explain legislation (e.g. Data Protection Act, 
Copyright)

Multiple-choice or definition questions

AO2 Apply ethical/legal issues to scenarios Respond to a scenario involving data misuse

AO3 Debate or evaluate social/environmental impact
Essay on the environmental impact of discarded 
devices



2.1 Algorithms AO1
Define terms: input, process, output, 
decomposition, abstraction

Recall activity; define terminology

AO2
Trace algorithms (flowcharts, 
pseudocode)

Determine output of search/sort 
algorithms

AO3 Design algorithms for given problems
Create flowcharts or pseudocode for a 
program

2.2 Programming Fundamentals AO1
Understand syntax and structure of 
programming concepts

Define variables, constants, data types

AO2
Apply constructs (IF, loops, functions) in 
code

Complete partially written Python 
programs

AO3
Write, test, and refine complete 
solutions

Develop a Python program from scratch

2.3 Producing Robust Programs AO1
Understand validation, verification, 
testing types

Match terms to definitions

AO2 Apply testing techniques (e.g. dry run) Create a test plan for a program

AO3 Debug and improve code Identify and fix errors in a provided script

2.4 Boolean Logic AO1 Recall logic gate symbols and truth tables Draw or complete truth tables

AO2 Apply logic to evaluate expressions Solve logic circuit problems

AO3 Design logic circuits from scenarios
Draw a circuit to meet set logical 
requirements

2.5 Programming Languages & IDEs AO1
Understand high-level vs. low-level 
languages

Define examples and characteristics

AO2
Apply knowledge to scenarios (e.g. 
compiler vs interpreter)

Choose appropriate tool for a use case

AO3 Evaluate IDE features for development
Compare IDLE vs. other IDEs for student 
use


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

