fx-991CW Interactive Manual

Scientific ClassWiz

Additional resources

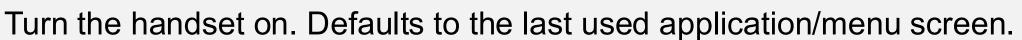
Training video

- This is a recording from a live training webinar.
- The video introduces the key features of the fx-991 CW calculator.
- If you're new to using one of these calculators, you've come to the right place!
- ClassWiz Practice (worksheets/teaching slides)
 - Revision Mat fx-991CW teaching resources for Higher GCSE.
 - <u>Cross Number Puzzles</u> teaching resources focusing on Cross Number for fx-991CW calculator (Higher GCSE)
 - <u>Teaching Resources page</u> general resources page including skills videos.

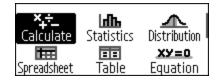
How to navigate around the manual

- Open the slideshow
- Press any key/label on the handset to access the user guide
- Use the mini calculator icon to return to the handset

Use the mini calculator icon to return


Online User Guide Video

The most important key


ON

Example: Always useful before attempting a calculation.

W

Notice the slight recess, so that if placed face down without the cover the handset will not turn on.

Decimal Approximation

Evaluate a decimal from a calculation instead of using FORMAT.

Example: From the default settings, find the decimal value $\frac{1}{12} + \frac{1}{3}$

$$\frac{1}{12} + \frac{1}{3} qB$$

$$\frac{1}{12} + \frac{1}{3}$$
0.4166666667

Make sure to press SHIFT first.

Using decimal approximation after calculating a value with \underline{B} performs another calculation, so be careful when using $\underline{*}$.

Z Negative

Negate a number in a calculation, list or table.

Example: Evaluate -3^2

(qp3)dB

Be careful to interpret the question correctly, this isn't the negative of three squared, hence parentheses. Notice that the screen character is shorter than subtract.

The mathematical unknown

X

The default key to enter the variable x.

Example:

Define
$$g(x) = x^2 - 2x - 3$$

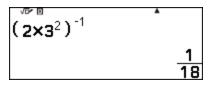
QRthree times | [d-2[-3]

$$g(x)=x^2-2x-3$$

The variable \underline{X} can also be entered using $\underline{q0}$.

Reciprocal

Equivalent to "one over" your entry.



Example:

- (a) Take the reciprocal of the calculation 2×3^2
- (b) Enter $\frac{1}{5}$

(a)
$$(2\times3d)q^B$$

(b) 5q^B

Use parentheses to take the reciprocal of the whole calculation.

Remember
$$x^{-1} = \frac{1}{x}$$
.

Logarithm

Take a logarithm with a defined base.

Example: Find (a) $\log_2 64$ (b) $\log_{64} 2$

(a) i2\$64B

(b) i64\$2B

1082(64)

log₆₄(2)

Taking logarithms is the opposite of raising something to a power.

a

Fraction template

Easily enter a fraction.

Example: Find (a)
$$\frac{7}{12} \div \frac{2}{3}$$
 (b) $\frac{1.3 \times 4.7}{3}$

(b)
$$(1.3 \times 4.7) a3B$$

Be careful to scroll away from the first denominator, otherwise

 $\frac{7}{7}$ $12 \div \frac{2}{3}$ $\frac{7}{18}$

Use parentheses to define the numerator.

Using FRACTIONS video

S

Square Root

Find the square root of a value or a calculation.

Example:

Find (a)
$$\sqrt{5.6}$$

(b)
$$\sqrt{12^2 + 7^2}$$

$$\sqrt{12^2 + 7^2}$$
 $\sqrt{193}$

Only the positive root is given.

Notice the surd answers, use " or n for decimal values."

Nth Root

Find the nth root of a value or a calculation.

Example: Find
$$\sqrt[3]{\frac{29}{113}}$$

Notice that **n** can also be negative.

Index

Enter an exponent for an expression or value.

Example:

Find (a)
$$1.75^5$$
 (b) $(1.6 \times 4.3)^{-3}$

(b)
$$^{(1.6\times4.3)}$$
\$qp3B

Use this key either before or after entering the base value. Useful for entering fractional and negative exponentials.

h

Natural logarithm

Evaluate a logarithm with base **e** (Euler's constant).

Example: Find ln 3.4

qi3.4)B

1n(3.4)

It's good practice to close the parentheses, but not necessary.

Why so irrational?

Irrational constants

e valuate a logarithm with base e (Euler's constant).

Example: Find (a) $4+\pi$ (b) e^2

(a) 4+q7B

(b) q8dB

4+π 7.141592654

e² 7.389056099

Although irrational, both of these values are used in calculations to 22 d.p accuracy.

Hours:Minutes:Seconds

Enter decimal time and angles and convert to sexagesimal.

Example: Express (a) 2.4 hrs as H:M:S

(b) 3hrs 54 mins 36 secs as a decimal

(a) 2.4q+B

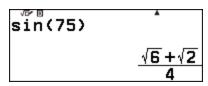
(b) 3x54x36xqB

2°24'0"

Always enter a value for H:M even if it is zero.

Are you missing a side?

jkl


Trigonometric ratios

Evaluate ratios for given angles.

Example: Find (a) sin 75 (b) 3cos 45

3cos(45) 3√2 2

It's good practice to close the parentheses, but not necessary.

For multiple calculations, it may be more useful to have decimal values, so change <u>L</u> to Mathl/DecimalO.

Parentheses (brackets)

Essential to ensure correct BIDMAS operation order.

Example:

Find (a)
$$2 \times (3 + 4)$$

Find (a)
$$2 \times (3 + 4)$$
 (b) $1.2 \times 10^2 \div 3.6 \times 10^3$

(a)
$$2 \times (3+4)B$$

(b)
$$(1.2K2\$) \div (3.6K3\$)B$$

The calculator follows BIDMAS strictly, so inserting parentheses is key for correct calculations. Make sure to scroll after entering the exponent.

Saved something for later?

ABCDEF Stored Variables A-F, x, y and z

X@V

Store calculations and values for later recall and manipulation.

Example: (a) Evaluate $\tan 35$ and store as B (b) Evaluate $5.2 \times \tan 35$

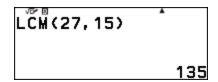
(a) I35)B'\$|twice (b) 5.2q5B tan(35) 0.7002075382

5.2B 3.641079199

Manipulate stored variables using normal rules of arithmetic.

Press to see the values of all stored variables.

Pause a second

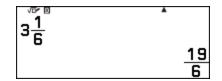

Comma

Use to separate entries.

Example: Find LCM of 27 and 15

TRR | R | 27q)15)B

Can also be used when generating random numbers, GCD etc.


Mixed number template

Use to enter a mixed number.

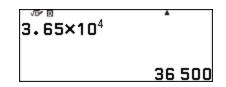
Example: Enter $3\frac{1}{6}$

3qa1R6B

Use <u>n</u> to change the appearance of the final value.

Exponent

Use when entering standard form.


Example:

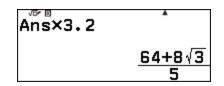
Find (a)
$$3.65 \times 10^4$$

Find (a)
$$3.65 \times 10^4$$
 (b) $1.2 \times 10^3 \div 2.7 \times 10^{-2} + 4$

(a) 3.65K4B

(b) a1.2K3R2.7Kqp2\$\$+4

The fraction template avoids the need to use parentheses. Using STANDARD FORM video

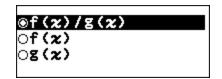

* Answer memory

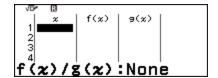
Recall and manipulate the previously calculated value.

Example: (a) multiply sin 60 +4 by 3.2 (b) find x_4 for the iteration $x_{n+1} = 1 + \frac{1}{x_n}$, $x_1 = 2$

(a)
$$j60)+4B\times3.2B$$

Notice that * doesn't actually need pressing in the first example. A very useful method for approximating solutions to equations.


BACK


Move back or return up a menu level.

Example: Return from setting the Table Type in Table.

`twice

Also useful for returning the cursor to the end of the input line after a calculation to edit or replay. See I for how to set the Table Type.

E

Scroll

Navigate through menus, check calculation history and move the cursor.

Example:

(a) change 2×13 to 21×3

(b) navigate to LCM in Calculate

(a) $2 \times 13! \circ !1$

(b) TRR|R|

21×3

LČM

Press !\$ after a calculation to move the cursor to the end of the input line, to edit or replay.

Press ER to scroll through the calculation history on screen.

Are you sure?

OK

Confirm data entry, a menu choice or perform a calculation.

Example: Find 5!

5TR|R|B

⊥ and B are interchangeable.

Let's save some key presses

Page Scroll

Use when a scroll bar appears, to scroll a page at a time.

Example: Scroll through <u>T</u> to find Degrees.

T&R|

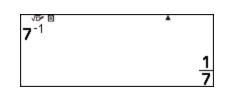
Degrees Radians Gradians Rect to Polar

If there are too many menu options to fit on the screen, a scroll bars appears to the right.

q

SHIFT

Use to access the modifying key labels.



Example:

(a) Enter the reciprocal $\frac{1}{7}$ (b) Turn the calculator off

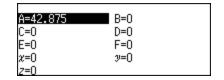
(a) q^7B

(b) qC

Notice the q indicator at the top of the screen, before pressing the modified key.

Variable

Access and edit stored variables.



Example:

(a) Store 3.5³ as A (b) Change the value of A to 43

(b) 43B'|twice

See Stored Variables.

The values are shown in Norm1 format.

Using MEMORY video

d

Square

Easily square expressions and values.

Example: Find (a) 2.675^2 (b) $(3.27 + 1.49)^2$

(a) 2.675dB

(b) (3.27+1.49)dB

2.675² 11 449 1 600

(3.27+1.49)²

14 161
625

See ^ to enter other exponentials including negatives and fractions.

Think of a number

123456789

Number digits

Enter numbers, obviously.

Example: Enter 12345.6789

12345.6789B

12345.6789 12345.6789

Notice the digit separation, change <u>L</u> to turn off.

Oh no, I've made a mistake

0

Backspace

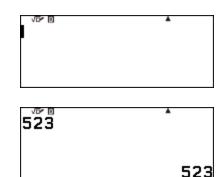
Delete entries.

Example: Enter 513 and then edit it to 523

512otwice23B

Compare with <u>I</u> for undoing the last key press.

All Clear


Close a selected menu or clear the screen.

Example:

- (a) Clear the Calculate screen
- (b) Close L'QTI menus

(a) C
(b) C

Calculation history is still available by pressing <u>E</u>. Closing a menu, returns to the previously displayed screen. Alternatively press <u>`</u> repeatedly to return back through the menus.

Also used to turn the calculator OFF.

The usual suspects

OP+p Addition, multiplication, subtraction and division.

Add, multiply, subtract and divide, obviously.

Example: Find
$$1 + 2 \times 3 - 4 \div 5$$

$$1+2\times3-4\div5B$$

Notice the order of operations is not left to right, but follows BIDMAS.

Decimal point.

For when you absolutely must utilise all of the decimal number system.

Example: Find
$$\frac{3}{7} + 3.7$$

Change Lfor a comma decimal mark.

B

Execute

Perform calculations or confirm data entry.

Example: Find (a) $\sqrt[3]{27 \times 10^3}$

(b) log 512

(a) qs3\$27K3B

(b) T|R|512)B

³√27×10³

າດ້ອື່(512) 2.709269961

See <u>l</u> as they are interchangeable with each other. See also <u>"</u>.

Quick Read

Create a QR code from a calculation or Table.

Example:

(a) Create a QR code from $\sqrt{25.9}$ (b) Create a QR code from a Table of $f(x) = x^2$ $1 \le x \le 5$

s25.9Bq[(a)

(b) IR|twice[d|I|Rthree times|q[

Scan the QR code on the calculator screen with a smart device. This can then take you to ClassPad.net. Click the QR codes above to simulate scanning.

Inverse trigonometric function

Find an angle from a value.

Example:

Find (a)
$$\sin^{-1} 0.75$$

(b)
$$tan^{-1} - 35$$

Notice that only a single value is given, in the range $-90^{\circ} \le x \le 90^{\circ}$.

INS Insert
Edit calculations using existing arguments.

Example: Edit
$$1 + \frac{1}{9}$$
 to $1 + \sqrt{\frac{1}{9}}$

Notice the INS cursor changes to ▶.

This saves deleting and re-entering parts of the calculation.

This is the end

OFF Off When you have had enough ...

Example: Turn the calculator off

qC

That's all folks ...

Function

Define and evaluate 2 functions and use in calculations.

Example:

(a) Define
$$f(x) = x^2 - 2x - 3$$
 and $g(x) = f(2x) + 4$ (b) Evaluate $4g(2)$

(a) QRtwice | [d-2[-3]

QRthree times |Q|2[)+4|

(b) 4QR|2)B

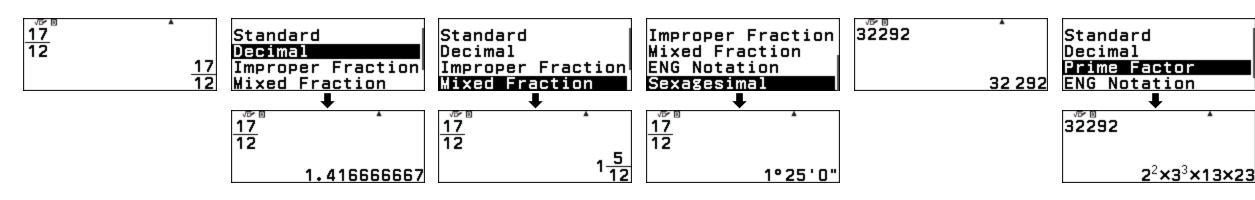
$$g(x)=f(2x)+4$$

4g(2)

Compare to using <u>I</u> for defining functions in Table. <u>Using FUNCTION video</u>

n

Format


Display the most appropriate value format.

Example:

Enter (a) $\frac{17}{12}$

(b) 32292 then press n and choose a format.

Use n to swap between different representations of the same value, the default is Standard.

Notice how the menu changes depending on the input.

Useful for individual calculations, change <u>L</u> to always get decimals or mixed fractions. <u>Using FORMAT video</u>

_ Log

Enter logarithm calculations with base 10.

Example:

- (a) Enter log 10000
- (b) Find $\frac{d(\log x^2)}{dx} x = 4$

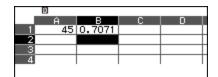
- (a) qd10000)B
- (b) T|twiceqd[d)\$4B

$$\frac{\frac{d}{dx}(\log(x^2))}{|x=4|}$$

See also <u>i</u> and <u>h</u>.

Equals

Use with Solver in Equation or in Spreadsheet.


Example:

(a) Solve
$$7x - 3 = 5$$

(a) Solve
$$7x - 3 = 5$$
 (b) Enter **B1**=sin(A1)

(a)
$$7[-3q(5|R)]$$

(b)
$$q(jq41)$$

Note that $\underline{\mathsf{T}}$ can also be used to enter $\underline{\mathsf{=}}$ in Solver.

Imaginary unit

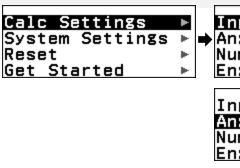
Use with Complex number calculations.

Example:

(a) Find
$$(2+3i)(1-i)$$

(a) Find (2+3i)(1-i) (b) The magnitude of (5-4i)

(a)
$$(2+3q9)(1-q9)B$$


Note that <u>I</u> can also be used to enter <u>U</u>.

SETTINGS

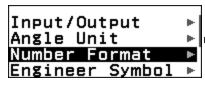
Change the calculator settings or RESET.

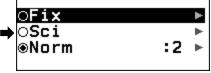
Change to always decimal output

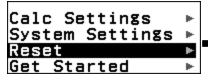
Contrast

→ Auto Power Off

MultiLine Font


QR Code


Input/Output
Angle Unit
Number Format
Engineer Symbol


Change angle measure

Change screen contract, power-off timer, font size etc.

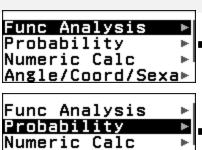
Change output decimal places, sig figs etc.

Fraction Result ►
Complex Result ►
Decimal Mark ►
Digit Separator ►

Change fraction output format

Reset data. Variable memory or everything.

Notice the settings for rectangular and magnitude-direction format for Complex number output. Note the default <u>settings</u> may not display decimals, see <u>FORMAT</u> or <u>"</u>.

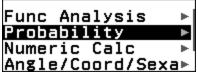

46

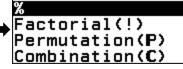
CATALOG

Find duplicate and further functionality.



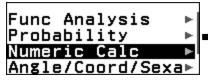
Select calculus. summation or different logarithms.


Sci Constants Unit Conversions⊳ Hyperbolic/Trig Engineer Symbol Sci Constants


Hyperbolic/Trig

Engineer Symbol ▶

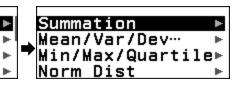
Hyperbolic functions and their inverses.



%, factorials, nPr, nCr and random numbers.

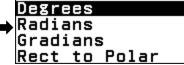
Length **⊸**Area Volume Mass Unit Conversions⊳

Convert measurements.


HCF. LCM. modulus and recurring decimal input.

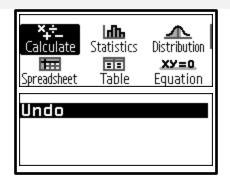
Use correct angle

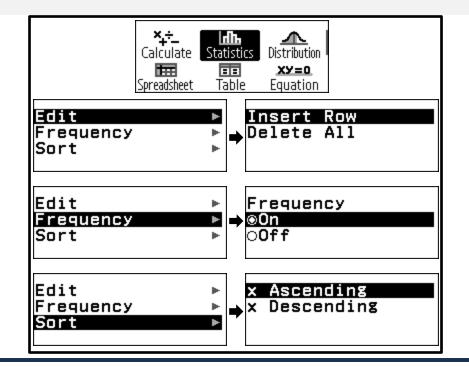
changing settings.

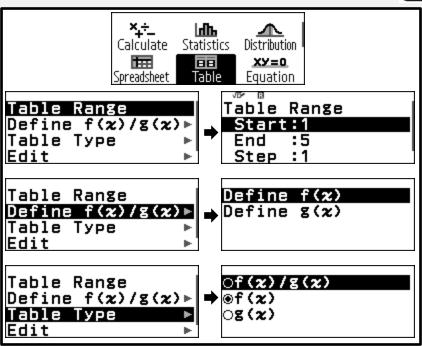

format without

Statistics Func Analysis Probability Numeric Calc

Adapted menu with additional functionality.

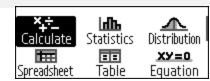

Note that T menu changes for different apps. e.g. Statistics, with additional functionality listed first.

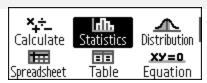


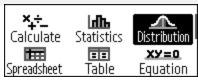

TOOLS

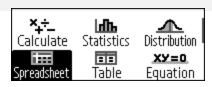
Additional tools for different apps or UNDO.

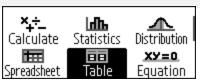
I responds according to the different apps, allowing additional settings to be changed.

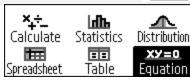


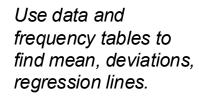


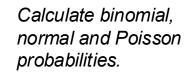

HOME


Displays the app screen, where applications can be selected.

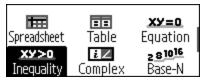


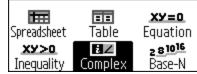


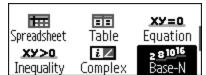


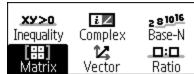


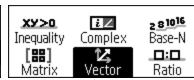
Normal calculation You will use this the most.

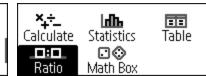





Input data and use formulae.


Create a table of values for one or two functions.


Solve Sim. Eq., polynomials and use Solver.



etc.

Solve quadratic, cubic and quartic inequalities.

Manipulate complex numbers and convert between forms.

Calculate and convert numbers using different bases.

Manipulate up to 4x4 matrices, find determinants etc.

Simulate dice rolls and coin tosses.

Manipulate 2D and Find a missing
3D vectors, find variable value from 2
angles, dot product equivalent ratios e.g.

$$\frac{A}{B} = \frac{2}{1}$$

